Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nat Commun ; 14(1): 2751, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2315860

ABSTRACT

Understanding the longitudinal dynamics of antibody immunity following heterologous SAR-CoV-2 breakthrough infection will inform the development of next-generation vaccines. Here, we track SARS-CoV-2 receptor binding domain (RBD)-specific antibody responses up to six months following Omicron BA.1 breakthrough infection in six mRNA-vaccinated individuals. Cross-reactive serum neutralizing antibody and memory B cell (MBC) responses decline by two- to four-fold through the study period. Breakthrough infection elicits minimal de novo Omicron BA.1-specific B cell responses but drives affinity maturation of pre-existing cross-reactive MBCs toward BA.1, which translates into enhanced breadth of activity across other variants. Public clones dominate the neutralizing antibody response at both early and late time points following breakthough infection, and their escape mutation profiles predict newly emergent Omicron sublineages, suggesting that convergent antibody responses continue to shape SARS-CoV-2 evolution. While the study is limited by our relatively small cohort size, these results suggest that heterologous SARS-CoV-2 variant exposure drives the evolution of B cell memory, supporting the continued development of next-generation variant-based vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Breakthrough Infections , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies
2.
Sci Transl Med ; 15(688): eadg2783, 2023 03 22.
Article in English | MEDLINE | ID: covidwho-2280175

ABSTRACT

Multiple studies of vaccinated and convalescent cohorts have demonstrated that serum neutralizing antibody (nAb) titers correlate with protection against coronavirus disease 2019 (COVID-19). However, the induction of multiple layers of immunity after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure has complicated the establishment of nAbs as a mechanistic correlate of protection (CoP) and hindered the definition of a protective nAb threshold. Here, we show that a half-life-extended monoclonal antibody (adintrevimab) provides about 50% protection against symptomatic COVID-19 in SARS-CoV-2-naïve adults at serum nAb titers on the order of 1:30. Vaccine modeling results support a similar 50% protective nAb threshold, suggesting that low titers of serum nAbs protect in both passive antibody prophylaxis and vaccination settings. Extrapolation of adintrevimab pharmacokinetic data suggests that protection against susceptible variants could be maintained for about 3 years. The results provide a benchmark for the selection of next-generation vaccine candidates and support the use of broad, long-acting monoclonal antibodies as alternatives or supplements to vaccination in high-risk populations.


Subject(s)
COVID-19 , Adult , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Vaccination , Antibodies, Monoclonal/therapeutic use
3.
Sci Immunol ; 6(56)2021 02 23.
Article in English | MEDLINE | ID: covidwho-1099743

ABSTRACT

A comprehensive understanding of the kinetics and evolution of the human B cell response to SARS-CoV-2 infection will facilitate the development of next-generation vaccines and therapies. Here, we longitudinally profiled this response in mild and severe COVID-19 patients over a period of five months. Serum neutralizing antibody (nAb) responses waned rapidly but spike (S)-specific IgG+ memory B cells (MBCs) remained stable or increased over time. Analysis of 1,213 monoclonal antibodies (mAbs) isolated from S-specific MBCs revealed a primarily de novo response that displayed increased somatic hypermutation, binding affinity, and neutralization potency over time, providing evidence for prolonged antibody affinity maturation. B cell immunodominance hierarchies were similar across donor repertoires and remained relatively stable as the immune response progressed. Cross-reactive B cell populations, likely re-called from prior endemic beta-coronavirus exposures, comprised a small but stable fraction of the repertoires and did not contribute to the neutralizing response. The neutralizing antibody response was dominated by public clonotypes that displayed significantly reduced activity against SARS-CoV-2 variants emerging in Brazil and South Africa that harbor mutations at positions 501, 484 and 417 in the S protein. Overall, the results provide insight into the dynamics, durability, and functional properties of the human B cell response to SARS-CoV-2 infection and have implications for the design of immunogens that preferentially stimulate protective B cell responses.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Adult , Aged , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , COVID-19/virology , Cohort Studies , Cross Reactions , Female , Humans , Immunologic Memory , Longitudinal Studies , Male , Middle Aged , SARS-CoV-2/immunology
4.
Science ; 371(6531): 823-829, 2021 02 19.
Article in English | MEDLINE | ID: covidwho-1048643

ABSTRACT

The recurrent zoonotic spillover of coronaviruses (CoVs) into the human population underscores the need for broadly active countermeasures. We employed a directed evolution approach to engineer three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies for enhanced neutralization breadth and potency. One of the affinity-matured variants, ADG-2, displays strong binding activity to a large panel of sarbecovirus receptor binding domains and neutralizes representative epidemic sarbecoviruses with high potency. Structural and biochemical studies demonstrate that ADG-2 employs a distinct angle of approach to recognize a highly conserved epitope that overlaps the receptor binding site. In immunocompetent mouse models of SARS and COVID-19, prophylactic administration of ADG-2 provided complete protection against respiratory burden, viral replication in the lungs, and lung pathology. Altogether, ADG-2 represents a promising broad-spectrum therapeutic candidate against clade 1 sarbecoviruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Broadly Neutralizing Antibodies/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Affinity , Binding Sites , Binding Sites, Antibody , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , COVID-19/prevention & control , COVID-19/therapy , Cell Surface Display Techniques , Directed Molecular Evolution , Epitopes/immunology , Humans , Immunization, Passive , Immunoglobulin Fc Fragments/immunology , Mice, Inbred BALB C , Protein Domains , Protein Engineering , Receptors, Coronavirus/metabolism , Severe acute respiratory syndrome-related coronavirus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/prevention & control , Severe Acute Respiratory Syndrome/therapy , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL